222

REPORTS ON CONFERENCES

Report of the 11th British Colloquium for

Theoretical Computer Science
University College Swansea, Wales, 2-5 April 1995
(Sponsored by the Engineering and Physical Sciences Research Council and by Praxis)

The meeting was held in Clyne Castle set in an award winning park with views over Swansea
Bay, the Mumbles and the Gower Peninsula, an area of outstanding natural beauty. This report
covers the technical content of a very successful meeting. An independent review of BCTCS11 has
already appeared in the EATCS Bulletin {Number 66, June 1995). The following pages list the
titles of talks by distinguished guests and the titles and abstracts of contributed talks.

BCTCS12 will be held in the University of Kent, 1-4 April 1996 under the local Chairmanship
of Simon Thompson, Details are on www page http:\\www.uke,ac.uk\computer.science\Bctes12\
or available by e-mail from S.J. Thompson@uke.ac.uk or J.Derrick@uke.ac.uk. We warmly encour-
age contributed talks from national and overseas participants at this lively but relaxed foremost
British Theoretical Computer Science conference. We welcome unrefereed reports of on-going re-
search and from research students who will particularly benefit from the series of tutorial seminars
which are on integral part of the meeting.

- Alan Gibbons and Chris Tofts

BCTCS National Committee: Alan Gibbons (Chairman, Warwick), Paul Dunne {Secretary,
Liverpool), Iain Stewart (Treasurer, Swansea), Julian Bradfield (Edinburgh), Savita Chauhan
(Doctoral student member, Swansea), Mike Holcombe (Sheffield), John Stell (Keele) Simon Thomp-
son (Kent), Chris Tofts (Manchester), John Tucker {Swansea).

Invited Talks

Metric Semantics
J. W, de Bakker, e-address: jaco@cwi.nl
e CWI/VUA, Amsterdam

Algebraic specifications and proofs by induction
Jan Heering, e-address: Jan.Heering@ewi.nl
CWI/VUA, Amsterdam

Higher-Order Processes and Their Models
M, Hennessy, e-address: matthewh@cogs.susx.ac.uk
Univerity of Sussex

Counting the Inhabitants of a Type
Roger Hindley, e-address: }L.R.Hindley@swansea.ac.uk
Mathematics Department, University of Wales, Swansea, Swansea SA2 8PP, UK,

The Computational Complexity of Bisimilarity
Faron Moller, e-address: fm®@sics.se
Swedish Institute for Computer Science

Categories, Proofs and Games,
D.E, Rydeheard, e-address: david@cs.man.ac.uk
Department of Computer Science, the University, Manchester, M13 9PL

Descriptive Complexity Theory
Tain Sleward, e-address: [.A.Stewart@swansea.ac.uk
Department of Computer Science, University College Swansea, Swansea, SA2 8PP

223

Contributed Talks

#-realizations of deterministic finite automata

Andries van der Wall and Lynelte van-Zijl, e-addess: lynette@cs.sun.ac.za
Steltenbosch University, 7600 Stellenbosch, South Afiica
Since the introduction in 1959 of nondeterminism in finite automata by Rabin and Scott [RS], quite
o number of different devices for the achievement of ‘succinctness’ or ‘power’ have been defined. A
(partial) list includes various two-way capabilities, alternation, bounded cooperative concurrency
and combinations of these, One purpose of this paper is to give a unifying framework for {most
of) them. Flowing from this, many other devices of this nature are shown to exist, and some of
these are explored briefly.

Priority-Queue Techniques for Visibility Computations
. Frank Devai, e-address: fl.devai@ulst.ac.uk
School of Computing and Mathematics, University of Ulster, Londonderry, UK, BT48 7JL

A worst-case optimal algorithm is proposed for determining the visibility of N line segments in
the plane. The method is generalised to determine the visibility of a collection of pairwise disjoint
polygons with a total of N edges in three-dimensional space. The three-dimensional algorithm
takes O((N + k)ogN) time and O(N + k) space, where k,0 <=k <= N(N —1)/2, is the total
number of intersecting paits among the images of the edges in the projection of the input polygons
onto a plane perpendicular to the viewing direction.

Can Implicit Methods Deliver Efficient Programs?

H. James Hoover. e-address: hoover@cs,ualberta.ca
University of Alberta, Edmonton, Alberta, Canada T6G 2H1
This talk is a progress report on the Mizar-C project to evaluate the feasibility of dealing with
resource consumption in implicit programming methods, The most important feature of Mizar-C is
its accounting of the resources required to compute. Statements whose validity has been established
by non-constructive reasoning, such as excluded middle, are marked as non-computable, and so
have no computationa} content. Constructively established statements are marked according to
the resources consumed when executing their computational content. Thus Mizar-C permits us to
employ elassical reasoning, except when we want to perform computations and extract programs.
Mizar-C’s second significant feature is that all typing in done via predicates. This lets us cast the
objects of our reasoning into different types.

Parallel algorithm for the conversion of a regular expression to its Glushkov’s
' automaton.

Dijelloul Ziadi and Jean-Marc Champarnaud, e-address: ziadi@dir.univ-roven.fr

. Universite de Rouen, Place Emile Blondel, 76821 Mont-Saint- Aignan, Cedex
Rytter proved that the transformation of & regular expression of size s to & corresponding non-
deterministic finite automaton with e-transitions can be achieved in O(logs) time using O(s/logs)
processors on a P-RAM. We prove that the transformation of a regular expression E of size s to its
automaton of Glushkov which is a non deterministic automaton without e-transitions can be done
in O(logs) time on a P-RAM under the condition that E is in star normal form. The generated
antomaton has n+1 states, where n is the number of the occurences of letters in the expression
E. On the other hand we show that the star normal form of regular expresston can be calculated
from E in O(logs) time with O(s) processors on a P-RAM,

Subclasses can be Subtypes
Sophia Drossopoulou & Dan Yang, e-address: scd@doc.ic.ac.uk
Department of Computing, Imperial College, London SW7
We develop a type system for object oriented programming languages, in which all subclasses are
considered as subtypes without any restrictions on the types of arguments of the methods redeclared
in the subclasses. Also, functional dependencies between the type of the receiver and/or argument
and the type of the result can be expressed. This paper addresses the soundness of this type
system. '

224

Verification and Validation of Attribute Grammars
Bernhard Bauer, e-address: bauner@informatik.tu-muenchen.de

Institut fuer Informatik, Technische Universitaet Muenchen, 80280 Muenchen
Attribute grammars as introduced by Knuth are a well accepted tool, e.g. for specifying compilers,
Janguage-based environments, user interfaces, document architecture and (static) semantics of
programming languages. But there are only a few papers appeared on the topic of verification
and validation of attribute grammars. By specifying the semantic functions algebraically, i.e. by
axioms, theorem proving techniques can be applied in the framework of attribute grammars, since
this unifying formalism allows the definition of a model theoretic semantics for attribute grammars.
Attributed term induction, developed as a new proof principle for attribute grammars, can
be used to prove properties between attribute instances at distinguished nodes of a special non-
terminal in the syntax tree. The new approach treats inherited and synthesized attributes in a
common fashion and can be seen as a general proof principle for attribute grammars. '

Correctness Issues in Transformational Refinement
Peter Kilpatrick, M Clint, T J Harmer and § Filzpairick, e-address: peter@plk.cs.qub.ac.uk
Dept. of Computer Science, The Queen’s University of Belfast, Belfast BT7 1NN, UK
Transformational refinement in the context of this talk refers to the automatic transformation of a
specification expressed in a functional programming language (typically SML, LISP or Miranda)
to an efficient implementation expressed in an imperative programming language (typically FOR-
TRAN or one of its parallel derivitives). In particular, our work focuses on the derivation of
efficient numerical mathematical algorithms for execution on a range of parallel machines.

A transformational derivation proceeds not as a monolithic translation process (c.f. compilation)

but rather as a sequence of sub-derivations which convert a program via a number of intermediate
forms which lie between its specification expressed in a specification language and its implemen-
tation expressed in the target language. Each of these transitions may be sub-divided into further
intermediate forms. In this talk we consider issues relating to the correctness of this transforma-
tion system. We first establish what we mean by correctness in this context and then describe a
framework in which correctness proofs may be undertaken, '

Case Studies in Higher-Order Algebra: The Specification and Verification of a
Dataflow Algorithm.
L.J.Sleggles, e-address: L.J.Steggles@newcastle.ac.uk
Computer Science Department, University of Newcastle, Newcastle upon Tyne, NE1 7RU.

Higher-order algebra provides a natural framework in which to formally develop computing systems -

and has been shown to be substantially more expressive than first-order algebraic methods, We
present a case study of higher—order algebraic methods applied to the specification and verification
of a dataflow algorithm for computing the Hamming stream, This case study demonstrates the
expressive power of higher-order algebraic methods by making use of a non-constructive task
specification which specifies the characteristic properties of the Hamming stream rather than how
to compute it. In order to do this we use a discontinuous (with respect to the Tynchonoff topology)

search function which is non-constructive and it is here that the additional expressive power of.

higher—order algebraic specification methods is required.

Local Confluence for Strong Reductions with Categorical Combinators
Nicholas Merriam, e-address; nam®@doc.ic.ac.uk
Imperial College, University of Lendon.
Curien presented the language of categorical combinators in his book, Categorical Combinators,
Sequential Algorithms and Functional Programming. The decidability of weak equality for terms
in typed categorical combinatory logic is simple. However the strong laws for deciding extensional
equality form a rewrite relation which is not locally confluent. Standard techniques such as the
Knuth Bendix procedure for completion of rewrite systems, and class rewriting are unable to
provide a solution. Happily, eritical pair analysis of the rewrite rules suggests a fairly simple
remedy: one rule, sL, must be applied not just with the pattern matching rewrite rule of inference
but with S-matching, where S is a strict subset of the whole rule set. By S-matching we mean
matching modulo a set of equations S. We present an algorithm for S-matching this particular rule

and use it to build a decision procedure for extensional equality of typable terms in categorical -

combinatory logic.

225

Infiniteness of proof(a) is Polynomial-Space Complete
Sachio Hirokawa, e-address: s.hirokawa@swansea.ac.uk

Department of Mathematies, University of Wales, Swansea SA2 8PP
Infiniteness problem is investigated for the set proof(c) of closed A-terms in p-normal form which

has « as their types. According to ‘Formulas-as-types® correspondence, it is identical to the set of
normal form proofs for o in intuitionistic Jogic. Firstly we show that the infiniteness is determined
by checking A-terms with the depth at most 2 & |2. Thus the problem is solved in polynomial-space.
Secondly we prove the polynomial-space completeness of the problem by reducing the emptiness
problem, which is know to be polynomial-space complete, to the infiniteness problem.

Symbolic Verification of Hardware Systems
Howard Barrvinger, Graham Gough, Brian Monahan & Alan Williams
e-address: alanw@cs.man.ac.uk

Department of Computer Science, University of Manchester, Manchester, UK
One approach commonly used for establishing the behavioural equivalence of hardware systems

uses state-space exploration to establish a bisimulation relation between the systems, modelled as
labelled transition systems. It has the distinct advantage of being automatic, and can produce
counter-example information when a verification fails. A second method represents system be-
haviour using logical expressions, and then establishes equivalence by employing theorem-proving
techniques. It operates abstractly at a high level, thus net necessarily suffering from combinato-
rial explosion, Further, when two systems are shown to be different, it may be possible to give
structured debugging feedback information af the level of the initial system representation, We
introduce a novel verification approach which effectively merges the above techniques. We take
Park and Milner’s standard (strong) bisimulation equivalence as our notion of equivalence between
labelled transition systems. However, we present the transition systems abstractly as determin-
istic machines and then define a siate bisimulation relation between the state spaces of the two
machines. The analysis proceeds in a truly symbolic manner, at the level at which the design is ex-
pressed. The approach described offers the possibility of containing the usual growth in complexity
of verification, whilst maintaining a high degree of automation.

A Note on Confluence of Term Rewriting Systems under Joinability of
Critical Pairs in One Step of Parallel Reduction
Mauricio Ayala, e-address: ayala@alpha.mat.unb.br

Departamento de Mateméatica, Universidade de Brasflia
‘Termination and confluence are the key properties of term rewriting systems {(TRSs). Many criteria

for proving termination as well as confluence of terminating TRSs have been developed. Without
termination assumption, criteria to guarantee confluence are either very restrictive or lost their
practical interest.

We study the following open question, Are confluent LL TRSs for which for every CP < P,@ >,
@ 4+ P#. Our investigation, on this very simple stated open question, contributes in giving some
light to understand its real complexity, but is not enough to conjecture about either & positive or
negative answer,

Directed Acyclic Graphs as Data Types for Concurrent Object-Oriented
Programming '
Dorel Lucany, e-address: lucanu@uaic.ro

University “Al. I Cuza®, Department of Computer Science, Berthelot 16, 6600 -Iagi, Romania.
"Graph transformation have been studied and applied in many fields of computer science: formal

languages theory, software engineering, concurrent and distributed systems, ete, Three tools have
been proposed for studying graph transformations: mathematical logic, universal algebra, and
category theory, Here we briefly present the three approaches: A logical formula describe graph
properties and so it defines the set of graphs which satisfy these properties. The category theory
is used for specifying graph rewriting rules and for defining the initial solution of a system of
graph equations, Universal algebra allows to build larger graphs from smaller ones by means of
operations and to represent graphs by finite algebraic expressions. We offer a mathematical tool
for treating in an uniform way directed acyclic graphs (on short dags). Our approach unifies
the Jast two above tools: category theory and universal algebra, We define several 2W-algebras
of (un)iabelled directed acyclic graphs (on short dags) and prove that our approach is enough
powerful to manipulate complex dags.

226

Infiniteness of proof(c) is Polynomial-Space Complete
Sachio Hirokawa, e-address: s hirokawa@swansea.ac.uk
Department of Mathematics, University of Wales, Swansea SA2 8PP
Infiniteness problem is investigated for the set proof(a) of closed A-terms in F-normal form which
has a as their types. According to ‘Formulas-as-types’ correspondence, it is identical to the set of
normal form proofs for « in intuitionistic logic. I‘lrstly we show that the infiniteness is determined
by checking A-terms with the depth at most 2| o |*. Thus the problem is solved in polynomial-space.
Secondly we prove the polynomial-space completeness of the problem by reducing the emptiness
problem, which is know to be polynomial-space complete, to the infiniteness problem.

An Q(logn) time linear cost lower bound for the single function coarsest partition
problem
Clive Galley, e-address: clive@dcs kel.ac.uk
Department of Computer Science, Kings College London
We consider the single function coarsest partition problem for a set S, where |S| = n, and a
function from § to S, We present an Q(logn) time, linear work, lower bound for this problem on
the common CRCW PRAM model of computation.

Genetic Program Systems as Generic¢ Problem Solvers
Brian Stonebridge, e-address; brian@compsci,bristol.ac.uk

Department of Computer Science, University of Bristol, Bristol
It is remarkable that in just twenty years, the Genetic Algorithm (GA) community has proceeded
from mutation as the sole form of change to contemplate automatic ways to solve problems hi-
erarchically by decomposition into subproblems, by solving subproblems by GAs and assembling
the results, The ideas of automatic function definition and the emeérgent genetic programming are
essentially products of work during the 80s published in the 90s, We are now in a position to search
for highly fit computer programs in the space of all possible computer programs. We present some
basic theory and the results of experiments in this field.

Language Spaces
Chris Holl, e-address: chris.holt@ncl.ac.uk
Department of Computer Science, University of Newcastle

We are used to characterizing semantics domains as mathematical objects, spaces containing points
with various relations among them; and we are used to viewing syntactic domains as structures in
spaces with given relations. For instance, textual language spaces are linear sequences, with points
associated with characters from a finite alphabet. These are mapped into spaces consisting of
linear sequences of symbols; and these are mapped into spaces of (parse) trees of semantic objects.
Graph grammars require syntactic spaces to be graphs; Petri nets require their syntactic spaces to
be bi-partite graphs; and so on. It is suggested that a language framework should allow & user to
specify the characteristics of a language space, before embedding a statement in that space. The
interfaces among different kinds of spaces should then be defined to facilitate the connection of
objects written in different kinds of languages. The goal is to allow 1D, 2D, and 3D statements to
be linked together in program structures.

Symbolic Verification of Hardware Systems
Howard Barringer, Graham Gough, Brian Monahan & Alan Williams
e-address; alanw®cs.man.ac.uk
Department of Computer Science, University of Manchester, Manchester, UK
One approach commonly used for establishing the behavioural equivalence of hardware systems
uges state-space exploration to establish a bisimulation relation between the systems, modelled as
labelied transition systems. 1t has the distinet advantage of being automatic, and can produce
counter-example information when a verification fails, A second method represents system be-
haviour using logical expressions, and then establishes equivalence by employing theorem-proving
techniques. It operates abstractly at a high level, thus not necessarily suffering from combinato-
rial explosion. Further, when.two systems are shown to be different, it may be possible to give
structured debugging feedback information at the level of the initial system representation. We
introduce a novel verification approach which effectively merges the above techniques. We take

227

Park and Milner’s standard (strong) bisimulation equivalence as our notion of equivalence between
labelled transition systems. However, we present the transition systems abstractly as determin-
istic machines and then define a siale bisimulation relation between the state spaces of the two
machines, The analysis proceeds in a truly symbolic manner, at the level at which the design is ex-
pressed. The approach described offers the possibility of containing the usual growth in complexity
of verification, whilst maintaining a high degree of automation.

Completeness of a Simple Program Transformation Framework
Peter Burton, e-address: Peter.Burton@des.qmw.ac.uk
Computer Science Department, Queen Mary and Westfield College, London Umversaty

A transformation framework is eomplete if, for any equivalent programs P and @, it allows a
derivation of P from @. In this context, completeness guestions are seldom addressed. The
reason is plaint for any universal programming formalism, equivalence is not semi-decidable; but
a complete transformation. framework yields a semi-decision algorithm by the enumeration of all
derivations; hence completeness ean immediately be ruled out. This still leaves the possibility of
positive results, provided we are willing to consider formalisms which cannot express all computable
functions. We consider here, in essence, one-level primitive recursion - but slightly generalised.

We have a category whose objects are derivors, i.e. programs in this extremely limited sense.
Because these arrows arise only between equivalent programs, we look only at sub-categories in
which all objects are equivalent, In particular, let us consider the full sub-category comprising
all objects equivalent to some given F'. Various questions can be asked about this: for example,
does it possess finite products? A positive answer to this question for all F would be sufficient
(though not necessary) for the completeness of our transformation framework. We shall show that
a'positive answer indeed results, and indicate some (cantious) extensions of the framework beyond
this first version. .

Optimal Prefix String Matching and Covering in Two Dimensions
Mazime Crochemore, Costas S. Ilopoulos & Maureen Korda, e-address: csi@dces.kel.ac.uk
Department of Computer Science, King’s College London, Strand, London,
The problem of prefix string matching in two dimensions is bo compute the largest prefix of a square
matrix F that ogcurs at each position of another given matrix T’ a linear algorithm is shown for
this problem, improving previous results by Giancarlo and Grossi By a factor of O{log[T}). The
new algorithm makes use of a two-dimensional *failure function”, whose computation is also shown
to require.linear time. A coveris a generalisation of the niotion of the period of a given string 2, A
substring w is a eover of # if @ can be constructed by concatenations and superpositions of w. We
consider the problem of computing all the square covers of a given two-dimensional square pattern;
a linear algorithm for this problem will be presented,

Tests that find all faults (well almost!).
M. Holcombe # Floventin Ipate, e-address: M.Holcombe@des.shef.ac.uk
Department of Computer Science, Sheffield University, Sheffield,

We present a method of generating test sets based on formal specifications that detect all faults
subject to no faults existing in specific components (basic processing functions). The work is
based on a theory of testing formulated for general computable functions and has beent applied to
a number of practical case studies. Current testing methods can say nothing about the possibility
of faults remaining in a system (software) on successful completion of the test procedure. This
method is the first approach that overcomes this objection to testing. it reprsents ard new type of
reductive testing method, Specific testability conditions are defined which also provide a theoretical
framework for the problem of constructing testable systems.

Reflection and Control in Production Systems
. Iain D. Craig, c-address: lain,Craig@des,warwick.ac.uk
Department of Computer Science, University of Warwick, Coventry CV4 TAL
Production systems are comnion in Al, They frequently employ upon general-purpose, domain-
independent, control techniques, These techniques are essentially syntactic: they can be insensitive
to the demands of particular problem types. We have specified (in Z) and constfucted a production
rule interpreter called ELEKTRA which can also support an arbitrary number of meta levels. It

228

allows access Lo its interpreter’s functions and state, and thereby permits the definition of rule
interpreters structured as sets of rules. At runtime, ELEKTRA permits multiple rule interpreters
to be present: the interpreters compete for processor time on a uni-processor implementation, so
only one will be active on any cycle. The choice of which interpreter to activate can be controlled
by meta rules. ELEKTRA allows its own interpreter to be encoded as a rule set and executed, In
this paper, we will describe ELEXTRA and some of the.theoretical problems it raises, and show
how different rule interpreters can be encoded. We will also discuss some of the ways in which
paraliel computation can be performed. .

Program improvement by proof planning
Peter Madden, e-addresst madden@mpi-sb.mpg.de
Max-Planck-Institut fuer Informatik, Im Stadtwald, W-66123 Saarbruecken, Germany.
A uniform framework for synthesizing efficient programs, based on inductive theorem proving, is
under development. In this framework we hope to capture a diverse range of program transfor-
mation technigues and apply them to the problem of improving the efficiency of programs. A
prototype system has been implemented, and some transformation techniques have been added.
(The work described in this article was carried out in collaboration with Alan Bundy, Jan Green
and Jane Hesketh, all of the Department of Al, University of Edinburgh, Scotland.)

Efficient implementation of constructive type theory

Simon Thompson, e-address: 5.J. Thompson@uke.ac.uk
Computing Laboratory, University of Kent
Constructive type theory is simultaneously a functional programming language and a constructive
logic. This talk introduces a version of Martin-Lof type theory-as a programming tool and, after
examining some simple example programs and proofs, discusses the problem of ’computational
relevance' of the proof information contained in definitions. We then show how to use ideas of
abstract interpretation to detect cases of redundant proof information, and so give a sound basis
for program transformations to remove these parts which contribute to program execution being
less efficient than it might be,

Documenting Systems using Tables and Equations.
Anthony Wilder, e-address: csanton.pg@swansea.ac.uk
Computer Science Department, University College Swansea, Swansea, SA2 8PP, Wales

A new Tabular method for documenting systems is presented. This method is based on concepts
developed by D.L. Parnas and others at McMastex University, Canada, By considering systems
modelled by event triggered state transition functions a tabular deseription can be systematically
constructed from the observed behaviour of the system. These notions will be illustrated by various
case studies.

The case studies gravitate towards User Interfaces modelled by event triggered state transition
functions. We shall see a variety of User Interface mechanisms tabular documented.

The mathematical relationship between tables, equations and algebras will also be addressed.
We shall describe the syntax (?form”) of two types of Parnas tables and define a semanties (" be-
haviour”) using algebras.

Validation of Reactive Programs which Incorporate Structured Data

H.L. Loedolff, P.J.A. d¢ Villiers & W.C, Visser , e-address: visserw®@cs,man.ac.uk
Department of Computer Science, The University, Manchester, M13 9PL
It is a challenging task to design & reactive program that can be proven to be correct. Model
checking provides a promising technique for building validation madels of reactive programs. Such
models can he shown te have important correctness properties. Several validation languages have
been developed for the purpose of validating protocol models. These validation languages model
data structures in an abstract way in order to prevent a state explosion. However, to validate
models of microkernels more detailed structured data types are essential. In this paper we describe
a compaction technique that allows efficient model checking of structured data. An experimental
validation language ESML is described and used to develop a validation model of a process sched-
uler which illustrates the use of structured data types. The process scheduler model was derived
from & larger model of a real microkernet,

229

Synthesis of Box Expressions from Petri Boxes
Martin Hesketh, e-address: Martin.Hesketh@newcastle.ac.uk
Computing Science Department, University of Newcastle, Newcastle upon Tyne, UK

The Petri Box Calculus is a Petri net based model for specifying concurrent systems. The calculus

consists of an algebra of Box Expressions, and a corresponding algebra of Petri Boxes (labelled

Petri nets). The algebra of Petri Boxes provide a compositional ssmantics for Box Expressions, and
" a means of translating an expression into a labelled Petri net. The reverse process - the problem

of synthesising a Box Expression from a Petri Box, in addition to having practical applications,

can be used as a tool to show an axiomatisation of the Box Calculus is complete,

This talk describes an investigation into the synthesis problem, and presents a solution based
on a collection of synthesis rules. Fach rule has a set of preconditions which must be satisfied
for the rule to be applied. The preconditions are based on structural properties of the net. The
application of & rule refines the Box Expression being synthesised, and decomposes the net into a
collection of subnets. ‘The synthesis process is applied recursively to each of the subnets, to yield
the synthesised expression,

A Comparison of the Partial Matching Performance between Correlation Matrix
Memory and Multi-Level Superimposed Coding.
Richard Filer and James Austin, e-address: rjhf@minster.york.ac.uk
Department of Computer Science, University of York, York YO1 5DD.
We presents the results of an analysis of the partial matching characteristics of Correlation Matrix
Memory. CMM is a binary, neural network, associative memory and is a development of the ADAM
system. We are particularly interested in the application of CMM to the fast partial matching of
tokens representing rules, i.e., using CMM as the inference engine of an expert system. It is
important to quantify the partial matching performance of CMM and useful to make a comparison
with a conventional partial matching method, Multi-level Superimposed Coding. CMM partial
matching performance can be shown to depend principally on the number of true matches in the
database, which is a desirable property. We explain in detail the analysis and consider possible time
savings in other aspects of CMM function (for example, CMM may be implemented in hardware).

Semantics of Serializable Database System by using Formal Models
Haruo Yamaguchi, e-address: yamaguch@cs.man.ac.uk
' Manchester University

This is an experiment to capture the semantics of concurrent serializable database system by using
formal methods. The difficulty resides in the description of inferference among transactions and
consistency of database as a global resource of the system. Traditional serializable database tho-
eries are based on graph-theoretical approaches, and in this article, some formal approaches are
employed including Structural Operational Semantics to give semantics to the concurrent serial~
izable database system without refering graph-theoretical approaches. Application for distributed
database systems are also discussed. :

Empiricism in Computer-based Modelling
Meurig Beynon— & Paul Ness, e-address: pen@dcs, warwick.ac.uk
Department of Computer Science, University of Warwick, Coventry CV4 TAL

In connection with our Empirical Modelling Project, we have developed case-studies and software
tools for constructing models of real-world phenomena. These exploit ageni-oriented modelling
over spreadsheet-like representation of state and lead to environments for simulation that allow
rich niodes of interaction only constrained (in the same way that interaction with a spreadsheet
is constrained) by the interpretation of variables and their interrelationships. Such freedom for
action has many advantages and in particular permits scientific experimantation.

In our view, the modelling methods we have developed are of interest in connection with the
foundations of computer science because they give insight into how computers can support the
empirical activity that in particular informs theory development. This has implications for many
areas of computing.

By directly associating variables with real-world observables, our modelling establishes an un-
usually close relation between a model and its real world semantics, but makes its operational
semantics enigmatic. Understanding our models in relation to theoretical models currently being
developed for concurrent system specification is a challenging problem. :

Program schemes and polynomial time
Savite Chauhan, e-address: s.r.chauhan@swansea.ac.uk
Department Computer Science, University of Wales Swansea, Swansea SA2 8PY

We define classes of program schemes with high-level programming constructs, such as stacks, and
which take finite structures as inputs, and show how these classes of program schemes characterize
complexity classes, These high-level characterizations enable us to vary whether constructs, such
as a successor relation or a linear order, are included in our program schemes, and to hopefully
prove inexpressibility results for certain problems and to investigate refined classes of such program
schemes, This research is still in a preliminary stage.

230

Algebraic Operational Semantics
Karen Stephenson, e-address: cskarens.pg@swansea.ac.uk
Department of Computer Science, University of Wales, Swansea SA2 3PP, UK.

We present an algebraic approach to define the operational semantics of programming languages.
‘We show how the behaviour of a system can be described using a function Comp(P, o, {) which gives
the state of the computation of a program P on an initial state o at time £, Given a set of atomic
instructions over which all other programs are constructed, the Comp function is axiomatically
defined for any system. This approach has the advantage over many other semantic models by
being modular, computable, axiomatic and not being higher-order,

We outline how this methodology can be used in proving general propositions of programs and
in the correctness of compilation.

RNC Algorithms for the Uniform Generation of Paths and Trees in Graphs
Ida Pu, Michele Zilo, Martyn Amos and Alan Gibbons, e-address: amg@dcs.warwick.ac.uk
Department of Computer Science, University of Warwick
We outline a number of randomised parallel algorithms for the uniform generation of variously
defined paths and for the uniform generation of spanning trees of a connected simple graph, The
algorithms run in low-order polylogarithmic time and involve a polynomial amount of work, These
are essentially the first efficient parallel algorithms described for these problems,

Uniform Parallel Generation of Combinatorial Structures

Michele Zilo, Ida Pu, and Alan Gibbons, e-address; amg@des.warwick.ac.uk
Department of Computer Science, University of Warwick
We describe an RNC algorithm for the uniform genération of unlabelled undirected graphs with
a specified number of nodes. The algerithm is archetypal in the sense that many other RNC
algorithms for the uniform generation of other combinatorial structures are possible using the
same framework. The framework is based upon a parallisation of a result of Dixon and Wilf and
uses simple probabilistic analysis to convert the expected running time of a sequential algorithm
into a worst case parailel running time.

A Fast Approximation Algorithm for the Multicommodity Flow Problem
Tomasz Radzik, e-address: radzik@des.kelaac,uk

Department of Compuier Science, King's College London, Strand, London WC2R, 2LS, UK -
In this paper we consider the following optimization version of the multicomimodity flow problen:
Find the minimum possible number OPT and a flow of all cominedities which is feasible when
all edge capacities are multiplied by OPT. Such a flow is called an optimal {concurrent) flow. A
flow is {-optimal if it is feasible when all capacities are multiplied by (1 +)OPT. The fastest
algorithm for computing an optimal flow (Vaidya) runs in O(k>%n®m®® log(nB)) time, n is the
number of vertices, m the number of edges, & the number of commodities and B the largest de-
mand/capacity (the capacities and demands are integral). A f-optimal flow, for a given constant {,
can be computed considerably faster. The randomized version of the algorithm of Leighton, Make-
don, Plotkin, Tardos, and Tragoundas finds & {-optimal flow after O(k logklogn) minimum-cost
flow computations, while the deterministic version requires O(k?logk logn) such computations.
One minimum-cost flow computation takes O(nm tog® n) Hme,

We show a deterministic algorithm which computes a t-optimal flow using only O{k log k log n)
minimum-cost flow computations. The total runing time is therefore O(knmloghlog®n). Our
algorithm follows the general scheme of Leighton's et.al. randomized algorithm but the random
selection of the commuodities is replaced by the deterministic round-robin.

Construetivity in Classical Logic

Charles Stewarl, e-address: Charles.Stewart@comlab.ox.ac.uk
Progranuming Research Group, Oxford University.
The Curry-Howard correspondence fundamentally links logic and computation, but is restricted to
intuitionistic logics, Recently progress has been made that demonstrates that we can also expect
such a relationship for classic logics. Girards linear logic is a wholly constructive logic in which
{cut-free) classical logic can be satisfactorily embedded. More concretely Griffin in 1990 published
a successful paper outlining a method of viewing continuations {as in Scheme, ML) as effectively
modeling the absurdity rule,

Despite these successes, they leave unanswered many fundamental questions about the nature
of constructivity in classical logic. Parigots system of Free Deduction has many desirable properties
from a proof theoretic perspective; most importantly it was the first caleulus of classical logic with
a confluent and strongly normalising cut-elimination procedure, required for the proof theory to
give a notion of computational value. Finally I present a correspondence between proofs in Free
Deduction and a subset of the constant-enriched A-calculius, and instantiations of the constants
within the pure untyped A-calculus.

231

Strategies for Temporal Resolution

Clarve Divon, e-address: dixone@es.man.ac.uk
Department of Computer Sceince, The University of Manchester
An approach to the mechanisation of temporal logics, based ot a form of clausal resolution has been
developed by Fisher. Temporal forimulae incorporating both past-time and future-time operators
are converted to a normal form, then both step and temporal resolution rules are applied. The
temporal resolution rule attempts to match eventualities which must be satisfied with sets of rules
which together imply that the eventuality will never be satisfied.In the talk we shall describe
Fisher’s resolution process, mention the different algorithms developed to enable the application
of the temporal resolution rule, and outline and discuss the strategies proposed for each pari of
the temporal resolution process.

INDUCT: A Logical Framework for Induction Over Natural Numbers
and Lists Built in SEQUEL
Andrew A Adams, e-address: asa@des.st-andrews.ac.uk
Schoo) of Mathematical and Computational Sciences, North Haugh, St Andrews, KY16

SEQUEL is a new language built on top of Lisp and designed for implementing theorem provers
and proof assistants. It includes a type theory for Lisp {(XTT — eXtended Type Theory) and
functions for sequent calculus and rewriting systems. The project described involves a description
of a framework for proving properties of functions, and the implementation details of programming
such a systen1 in SEQUEL’s sequent calculus notation. The framework, called INDUCT, is based
on the theory laid out in Boyer and Moore’s 1979 Book ‘A Computational Logic’. INDUCT has
been limited to producing a framework dealing with Natural Numbers and Lists. Extension of the
framework to other Lisp types and then to user-defined SEQUEL types should be possible, since
little of the framework is dependent upon the nature of the types, merely upon the theoretical re-
quirements eommon to INDUCT and NQTHM. Areas which would require more than rudimentary
changes to achieve these ends will be highlighted and suggestions made as to how these changes
could be imiplemented. '

Order Sorted Theories
John Stell, e-address: John@cs.keele.ac.uk
Department Computer Science, Keele University, Keele, Staffs, ST5 §BG
Order sorted algebra is the generalization of many sorted algebra obtained by having a partially
ordered set of sorts rather than merely aset. It has been applied to the handling of errors in abstract
data type specifications. There are several variants of order sorted algebra, and relationships
between these are known. However, the question of what should be meant by an order sorted
theory, as opposed to a presentation given by a particular signature of operation symbols, does
not seem to have received much attention. In this talk I will show how the notion of a theory as a
category, in the sense of Lawvere, fits order sorted algebra by having poset enriched theories, and
taking as models suitable functors to categories of sets and partial functions.

Two Topologies Are Better Than One
Simon John O’Neill, e-address: S.J.ONeili@dcs.warwick.ac.uk
Department of Computer Science, University of Warwick

We consider an appropriate context in which to consider these spaces is as a bitopological space,
i.e. a space with two (related) topologies. From this point of view, we cover the groundwork for a
theory of partial metric spaces by generalising ideas from topology and metric spaces.

For intuition we repeatedly refer to the real line with the usual ordering and metric. - However
we also consider other examples of more relevance to Computer Science.

Timed Synchronous Interaction Categories
Justin Pearson, e-address: justin@des.rhbne.ac.uk
Department of Computer Science, RHBNC, London.

This talk presents a Timed Extension of Abramsky’s Interaction Categories. An Interaction Cate-
gory is a new type theorectic way of looking at process algebras, where instead of having processes
as objects and morphisms as structure preserving maps between processes, the objects of Interac-
tion Categorys are saftey specifications and the morphims are processes satisfying certain saftey
specifications. Timed Interaction Categories, include timing information in the types, in the syn-
chronous version a timed synchronisation algebra captures how timed processes act under parallel
composition,

